bp神經(jīng)網(wǎng)絡(luò)算法介紹 bp神經(jīng)網(wǎng)絡(luò)算法簡(jiǎn)介
發(fā)布時(shí)間:2025-12-03 | 來(lái)源:互聯(lián)網(wǎng)轉(zhuǎn)載和整理
1、BP(Back Propagation)網(wǎng)絡(luò)是1986年由Rumelhart和McCelland為首的科學(xué)家小組提出,是一種按誤差逆?zhèn)鞑ニ惴ㄓ?xùn)練的多層前饋網(wǎng)絡(luò),是應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò)模型之一。BP網(wǎng)絡(luò)能學(xué)習(xí)和存貯大量的輸入-輸出模式映射關(guān)系,而無(wú)需事前揭示描述這種映射關(guān)系的數(shù)學(xué)方程。它的學(xué)習(xí)規(guī)則是使用最速下降法,通過(guò)反向傳播來(lái)不斷調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使網(wǎng)絡(luò)的誤差平方和最小。BP神經(jīng)網(wǎng)絡(luò)模型拓?fù)浣Y(jié)構(gòu)包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。
2、BP神經(jīng)網(wǎng)絡(luò)算法是在BP神經(jīng)網(wǎng)絡(luò)現(xiàn)有算法的基礎(chǔ)上提出的,是通過(guò)任意選定一組權(quán)值,將給定的目標(biāo)輸出直接作為線性方程的代數(shù)和來(lái)建立線性方程組,解得待求權(quán),不存在傳統(tǒng)方法的局部極小及收斂速度慢的問(wèn)題,且更易理解。