三角函數(shù)套反三角函數(shù)公式
發(fā)布時間:2025-09-04 | 來源:互聯(lián)網(wǎng)轉(zhuǎn)載和整理
數(shù)學(xué)中把反正弦函數(shù)y=arcsinx,反余弦函數(shù)y=arccosx,反正切函數(shù)y=arctanx,反余切函數(shù)y=arccotx統(tǒng)稱為反三角函數(shù)。一下就是三角函數(shù)與反三角函數(shù)的公式與圖像
1. 正弦函數(shù) sin x, 反正弦函數(shù) arcsin x
y = sin x, x∈R, y∈[–1,1],周期為2π,函數(shù)圖像以 x = (π/2) + kπ 為對稱軸
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0←→arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2←→arcsin x = π/4
sin x =1←→arcsin x = π/2
2. 余弦函數(shù) cos x, 反余弦函數(shù) arccos x
y = cos x,x∈R, y∈[–1,1],周期為2π,函數(shù)圖像以 x = kπ 為對稱軸
y = arccos x,x∈[–1,1], y∈[0,π]
cos x = 0←→arccos x = π/2
cos x = 1/2 ←→ arccos x = π/3
cos x = √2/2←→arccos x = π/4
cos x =1←→arccos x =0
3. 反正弦函數(shù) arcsin x,反余弦函數(shù) arccos x
y = arcsin x 與 y = arccos x 自變量的取值范圍都是x∈[–1,1]
y = arcsin x 與 y = arccos x 的圖像關(guān)于直線 y =π/4 對稱,相交與點 (√2/2 ,π/4)
4.正切函數(shù) tan x, 余切函數(shù) cot x
y = tan x,x∈( (–π/2) + kπ,(π/2) + kπ ), y∈R,周期為π,當(dāng)x→±(π/2) + kπ 時,函數(shù)的極限是無窮大∞
y = cot x = 1 / tan x,x∈( kπ,(k+1)π), y∈R,周期為π,當(dāng)x→ kπ 時,函數(shù)的極限是無窮大∞
y = tan x 與y = cot x 的圖像關(guān)于 x = (π/4) + kπ/2 對稱
在單個周期內(nèi)(第一個),y = tan x 與y = cot x 的圖像相交與點 (π/4 ,1)。當(dāng) x =(π/4) + kπ/2 時,y = tan x 與y = cot x 函數(shù)的值都相等,等于±1
5. 反正切函數(shù) arctan x,反余切函數(shù) arccot x
y = arctan x 與 y = arccot x 自變量的取值范圍都是x∈R
y = arctan x 與 y = arccot x的圖像關(guān)于直線 y =π/4 對稱,相交與點 (1 ,π/4)
tan x = 0←→arctan x = 0
tan x = 1←→arctan x = π/4
tan x = √3←→arctan x = π/6
6. 余割函數(shù) csc x
y = csc x = 1 / sin x,x∈(0,kπ ),y∈(–∞,–1]∪[1,∞),周期為π,當(dāng)x→ kπ 時,函數(shù)的極限是無窮大∞
7. 正割函數(shù) sec x
y = sec x = 1 / cosn x,x∈( (–π/2) + kπ,(π/2) + kπ ),y∈(–∞,–1]∪[1,∞),周期為π,當(dāng)x→(π/2) + kπ 時,函數(shù)的極限是無窮大∞