二元一次方程的解法加減消元法
發(fā)布時(shí)間:2025-11-06 | 來(lái)源:互聯(lián)網(wǎng)轉(zhuǎn)載和整理
二元一次方程的解法加減消元法如下:
1、當(dāng)二元一次方程組的兩個(gè)方程中同一未知數(shù)的系數(shù)互為相反數(shù)或相等時(shí),把這兩個(gè)方程的兩邊分別相加或相減,就能消去這個(gè)未知數(shù),得到一個(gè)一元一次方程,這種方法叫做加減消元法,簡(jiǎn)稱(chēng)加減法。
2、用加減法解二元一次方程組的一般步驟:
(1)變換系數(shù):把一個(gè)方程或者兩個(gè)方程的兩邊都乘適當(dāng)?shù)臄?shù),使兩個(gè)方程里的某一個(gè)未知數(shù)的系數(shù)互為相反數(shù)或相等。
(2)加減消元:把兩個(gè)方程的兩邊分別相加或相減,消去一個(gè)未知數(shù),得到一個(gè)一元一次方程。
(3)解這個(gè)一元一次方程,求得一個(gè)未知數(shù)的值。
(4)回代求解:將求出的未知數(shù)的值代入原方程組的任一方程中,求出另一個(gè)未知數(shù)的值。
(5)把這個(gè)方程組的解,寫(xiě)成{x=ay=b的形式。
相關(guān)資料:
代入消元法和加減消元法是二元一次方程組的兩種基本解法,它們都是通過(guò)消元將方程組轉(zhuǎn)化為一元一次方程,再求解。
代入消元法:
1、把二元一次方程組中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來(lái),再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做代入消元法,簡(jiǎn)稱(chēng)代入法。
2、用代入法解二元一次方程組的一般步驟:
(1)從方程組中選一個(gè)系數(shù)比較簡(jiǎn)單的方程,將這個(gè)方程中的一個(gè)未知數(shù),例如y,用另一個(gè)未知數(shù)如x的代數(shù)式表示出來(lái),即寫(xiě)成y=mx+n的形式。
(2)代入消元:把y=mx+n代入另一個(gè)方程中,消去y,得到一個(gè)關(guān)于x的一元一次方程。
(3)解這個(gè)一元一次方程,求出x的值。
(4)回代求解:把求得的x的值代入y=mx+n中求出y的值,從而得出方程組的解。
(5)把這個(gè)方程組的解,寫(xiě)成{x=ay=b的形式。